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Abstract
A non-perturbative local moment approach to single-particle dynamics of the
general asymmetric Anderson impurity model is developed. The approach
encompasses all energy scales and interaction strengths. It captures thereby
strong coupling Kondo behaviour, including the resultant universal scaling
behaviour of the single-particle spectrum; as well as the mixed valence and
essentially perturbative empty orbital regimes. The underlying approach is
physically transparent and innately simple, and as such is capable of practical
extension to lattice-based models within the framework of dynamical mean-
field theory.

1. Introduction

The Anderson impurity model (AIM) [1] has long played a pivotal role in understanding
the physical behaviour of materials dominated by strong, local Coulomb interactions (for a
comprehensive review see e.g. [2]). A broad range of problems is encompassed by the AIM
itself, including [2] magnetic impurities in metals, heavy fermion systems when coherence
effects are suppressed, and the burgeoning area of quantum dots [3, 4].

Further impetus to the study of quantum impurity models has arisen with the advent of
dynamical mean-field theory (DMFT) [5–8], within which correlated lattice-based systems
such as the periodic Anderson or Hubbard models reduce to an effective quantum impurity
hybridizing self-consistently with the surrounding fermionic bath. To capture such problems
entails the ability to describe an AIM with essentially arbitrary dynamics (ω-dependence)
in the hybridization function �(ω) that embodies coupling between the impurity and the
underlying host/bath. The theoretical difficulties here are considerable, unsurprisingly given
the wide range of physics encompassed; and despite impressive progress in recent years [5–
8] there remains a need for new theoretical approaches that can handle in particular the full
range of interaction strengths: from non-perturbative strongly correlated regimes with their
attendant low-energy scales, through to weak coupling, essentially perturbative domains of
behaviour.
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Similar comments are in fact applicable even to the conventional metallic AIM [1]. Here,
static properties (thermodynamic and related) are certainly well understood using a variety
of powerful approaches, including the numerical renormalization group [9], Fermi liquid
theory [10] and the Bethe ansatz [11]. But the situation is less satisfactory when it comes
to a theoretical description of dynamics, in particular single-particle excitations. A wide
variety of theories, approximate of necessity, have of course been developed in this regard [2];
including for example perturbation theory in the interaction strength (U ) [12], self-consistent
renormalization thereof [13], modified perturbation theory [14], large-N expansions [15, 16],
the non-crossing approximation [17–19] and generalizations of it to finite-U [20, 21], slave
boson mean-field theory [22, 23], a conserving t-matrix approximation [24] and the spinon
approximation [25, 26]. Their undoubted virtues notwithstanding however, many of these
approaches have well recognized qualitative limitations [2]; and there is much scope for further
theoretical development, ideally via an approach that is sufficiently general and practicable
that it can be extended with relative ease to handle correlated lattice-based models within the
DMFT framework.

We have recently initiated development of one such, the local moment approach
(LMA) [27–32]. This non-perturbative method is technically simple and transparent, with
the physically intuitive notion of local moments [1] introduced explicitly and self-consistently
from the outset. For the symmetric AIMs in which context it has thus far been considered, the
LMA handles single-particle dynamics for all interaction strengths, and on all energy scales
including recovery of Fermi liquid behaviour at low energies. It captures in particular the
spin-fluctuation physics symptomatic of the strong coupling Kondo regime, manifest in an
exponentially narrow Kondo resonance in the single-particle spectrum D(ω) [27]; such that
the resultant scaling behaviour D(ω) ≡ F(ω/ωK) (with ωK the Kondo scale) can be obtained
in closed form [28], and gives excellent agreement with NRG calculations [33] that provide
benchmark results against which to compare approximate theories. The LMA has also been
extended to finite-T [31], encompassing both single-particle dynamics and associated transport
properties such as the resistivity. The role of a magnetic field H [30], which poses particular
difficulties for conventional theoretical approaches to dynamics,can likewise be addressed; and
for the Kondo regime in particular,corresponding static properties [29] such as the Wilson ratio,
impurity magnetization and spin susceptibility are found to agree well for essentially all field
strengths with exact results known e.g. from the Bethe ansatz. Finally but importantly, we add
that the LMA is not restricted to the Fermi liquid physics arising ubiquitously in the metallic
AIM. The soft-gap AIM [34], containing an underlying quantum phase transition between
generalized Fermi liquid and degenerate local moment phases, provides a particular example;
in which a rich range of behaviour has been uncovered by the LMA [32] and confirmed by
NRG calculations [33].

The LMA considered hitherto is nonetheless specific to particle–hole symmetric AIMs
where the impurity orbital energy, εi, is slaved to the on-site interaction via εi = −U

2 . It is
obviously desirable to extend the approach to encompass the generic asymmetric case, where
the enlarged parameter space spans a wider range of physical behaviour [2], from the strong
coupling Kondo domain through mixed valent behaviour to the ultimately perturbative empty
orbital regime. This is important also from the viewpoint of extension to lattice-based models
within DMFT [5–8], where asymmetry in the underlying impurity model corresponds to lattice
models away from half-filling; and is hence required to capture e.g. heavy fermion physics
employing the periodic Anderson model.

A local moment approach to the asymmetric AIM is considered in the present paper.
Following the requisite background (section 2), the two-self-energy description inherent to the
LMA is considered in section 3, with particular emphasis on the notion of (self-consistent)
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symmetry restoration (SR) that is central to the approach. That discussion is general, being
applicable to an essentially arbitrary diagrammatic approximation for the underlying self-
energies, and not dependent upon the symmetry-specific arguments hitherto employed for the
symmetric AIM [27, 28]. The particular non-perturbative approximation to the LMA self-
energies implemented here in practice is discussed in section 4.1; it passes the criterion of
practicability, yet appears to capture rather well the relevant regimes of behaviour. Results
arising therefrom are given in section 5, including the rather subtle issue of universal spectral
scaling in the strong coupling Kondo limit (section 5.1); as well as evolution of single-particle
spectra from strong to weak coupling behaviour (section 5.2) as the Kondo, mixed valence and
empty orbital regimes are traversed. The paper concludes with a brief summary/outlook.

2. Background

With the Fermi level taken as the energy origin, the familiar Hamiltonian for the spin- 1
2

AIM [1, 2] is

Ĥ =
∑
k,σ

εkn̂kσ +
∑

σ

(εi + 1
2 Un̂i−σ )n̂iσ +

∑
k,σ

Vik(c
†
iσ ckσ + c†

kσ ciσ ). (2.1)

The first term describes the non-interacting host with dispersion εk, and the third is the one-
electron host–impurity coupling. The second term refers to the correlated impurity with site-
energy εi and on-site interaction U ; and the large parameter space of the model is conveniently
specified by the asymmetry parameter [1]

η = 1 +
2εi

U
(2.2)

with η = 0 for the particle–hole symmetric case (for which εi = −U
2 , and the impurity charge

n = ∑
σ 〈n̂iσ 〉 = 1 for all U ).

Our interest is in single-particle dynamics embodied in the impurity Green function
G(ω) (↔G(t) = −i〈T̂ (ciσ (t)c†

iσ )〉), which is naturally independent of spin σ (=↑/↓ or
+/−) since Ĥ is invariant under σ ↔ −σ ; and hence the impurity spectrum D(ω) =
− 1

π
sgn(ω) Im G(ω). In the trivial non-interacting limit U = 0, the Green function reduces to

g(ω) = [ω+ − εi − �(ω)]−1 (2.3)

where ω+ = ω + i0+ sgn(ω), and is determined solely by the hybridization �(ω) =
�R(ω) − i sgn(ω)�I(ω) given by

�(ω) =
∑

k

|Vik|2
ω+ − εk

. (2.4)

The essence of the conventional AIM is that the host is metallic by presumption, corresponding
to a non-zero hybridization strength defined by �0 = �I(ω = 0) (with ω = 0 the Fermi
level). In practice, and without any essential limitation, we thus consider the usual wide flat-
band host [2] for which �(ω) = −i sgn(ω)�0; where the hybridization strength is related by
�0 = πV 2ρ to the host density of states ρ and the matrix elements V ≡ Vik. The model is
thus characterized by two independent parameters: either

ε̃i = εi

�0
Ũ = U

�0
(2.5)

as is traditional; or, as may prove more convenient (and in fact essential in the Kondo scaling
regime as we show later), by fixed asymmetry η and one or other of Ũ , ε̃i.
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For U > 0, G(ω) is conventionally written as

G(ω) = [g(ω)−1 − �(ω)]−1 (2.6)

in terms of the single self-energy �(ω) = �R(ω) − i sgn(ω)�I(ω), with �R/�I related by
Hilbert transformation. The limiting low-ω behaviour of G(ω) that is symptomatic of the
Fermi liquid character of the AIM is the familiar quasiparticle form [2]

G(ω) = 1

ω+/Z − ε ′
i + i sgn(ω)[�0 + O(ω2)]

(2.7)

that is simply the leading low-ω expansion of equation (2.6) using �I(ω) ∼ O(ω2); where
Z = [1−(∂�R(ω)/∂ω)ω=0]−1 is the quasiparticle weight, and ε ′

i = εi+�R(0) the renormalized
level. The latter is related to the excess charge nimp induced by addition of the impurity, via the
Friedel sum rule [35] (which itself follows directly from the Luttinger integral theorem [36]);
specifically [2]

nimp = 2
∫ 0

−∞
dω �ρ(ω) = 1 − 2

π
tan−1

(
εi + �R(0)

�0

)
(2.8)

such that (ε′
i =) εi + �R(0) = �0 tan[ π

2 (1 − nimp)]. Here �ρ(ω) = ρ(ω) − ρhost(ω) is
the change in total density of states of the system due to addition of the impurity, given by
�ρ(ω) = − 1

π
sgn(ω) Im{G(ω)[1 − ∂�(ω)/∂ω]}; so that nimp is related in general to the local

impurity charge

n = 2
∫ 0

−∞
dω D(ω) (2.9a)

by

nimp = n − 2

π
Im

∫ 0

−∞
dω G(ω)

∂�(ω)

∂ω
(2.9b)

(with nimp = n for the wide flat-band case considered in practice). Equations (2.7), (2.8) lead
directly in turn to

π�0 D(ω = 0) = sin2

(
π

2
nimp

)
(2.10)

relating the Fermi level spectrum to nimp, and reducing to the ‘pinning’ condition π�0D(0) = 1
for the particle–hole symmetric case where nimp = 1 always. The above results, all well known,
will prove important in subsequent sections.

The quasiparticle form equation (2.7), conjoined with the Friedel sum rule for ε′
i =

εi + �R(0), forms a starting point for microscopic Fermi liquid theory as well as being
the essential result for G(ω) arising from slave boson mean-field theory (see e.g. [2]). Its
familiarity should not however obscure its limitations, for it is confined to the lowest frequencies
ω/�0 Z 
 1; and as such (save trivially for U = 0) captures only a tiny fraction [28] of
the Abrikosov–Suhl resonance, let alone high-energy spectral features such as the Hubbard
satellites. To capture dynamics on all energy scales, while recovering correctly the limiting
quasiparticle form equation (2.7), is not a trivial matter; and non-perturbative approaches are
certainly required to handle e.g. the strong coupling Kondo regime. One such is discussed
here.

Before proceeding, two remaining relevant points should be made. First, briefly, to specify
the minimal range of asymmetry η (equation (2.2)) that need be considered. Under a particle–
hole transformation, εi is replaced by −[εi+U ] [9]; and, labelling temporarily the εi-dependence
of G(ω) and nimp, it is straightforward to show that G(ω; εi) = −G(−ω; −[εi + U ]), i.e.

D(ω; εi) = D(−ω; −[εi + U ]) (2.11)
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and hence nimp(εi) = nimp(−[εi + U ]). From this it follows that only εi � −U/2 (and hence
0 � nimp � 1) need be considered, corresponding (equation (2.2)) to η � 0. This range is
assumed from now on.

The second point refers to the strong coupling Kondo limit of the AIM. Corresponding to
nimp → 1, this arises when εi < 0 such that |ε̃i| � 1 and Ũ − |ε̃i| � 1 (i.e. the lower/upper
Hubbard satellites centred on εi = −|εi| and εi + U respectively are well below/above the
Fermi level). The approach to the Kondo limit is not therefore unique, in that nimp → 1 arises
for any given asymmetry η ≡ 1 − 2|ε̃i|/Ũ ∈ [0, 1] upon progressively increasing either Ũ or
|ε̃i|. This is reflected in turn by the fact that the Kondo model onto which the low-energy sector
of the AIM maps in strong coupling under a Schrieffer–Wolff transformation [37], contains
both exchange (J ) and potential (K ) scattering contributions [2]; namely

ĤK =
∑
k,σ

εkn̂kσ + 2J ŝi · Ŝ(0) + 1
2 K

∑
k,k′,σ

c†
kσ ck′σ . (2.12)

Here ŝi and Ŝ(0) denote respectively the impurity spin and conduction electron spin density
at the impurity; and the exchange and potential scattering matrix elements are related to the
bare parameters of the AIM by [2]:

ρ J = �0

π

{
1

|εi| +
1

U − |εi|
}

=
[
π |εi|(U − |εi|)

�0U

]−1

(2.13a)

ρK = �0

π

{
1

|εi| − 1

U − |εi|
}
. (2.13b)

The appropriate Kondo model may thus be characterized by the two dimensionless parameters
ρ J and K/J , with ρ J 
 1 for the AIM → Kondo reduction to be valid; and where from
equations (2.13a), (2.13b) and (2.2)

K

J
= 1 − 2|εi|

U
≡ η (2.14)

is simply the asymmetry of the underlying AIM. Note that the Kondo model that in practice
is usually considered lacks potential scattering, and hence corresponds to the strong coupling
limit of the symmetric AIM alone (η = 0). In general however, physical properties of the
AIM in the strong coupling regime should depend on K/J = η; a statement that, with one
limiting exception, applies in particular to the scaling behaviour of the single-particle spectrum,
D(ω) ≡ F(ω/ωK) with ωK ∝ �0 Z → 0 the Kondo scale. That exception resides in the
leading low-ω behaviour of G(ω) embodied in the quasiparticle form G(ω), equation (2.7);
which in the Kondo limit where nimp → 1 (and hence ε ′

i = εi + �R(0) → 0), is dependent
solely upon ω/�0 Z ∝ ω/ωK with no explicit dependence on K/J = η. To our knowledge
one nonetheless has no a priori reason to expect that the single-particle scaling spectrum on
all energy scales ω/ωK will be independent of the asymmetry η.

3. LMA: basis

The conventional route to single-particle dynamics is via the usual ‘single’ self-energy �(ω).
But this is merely defined by the Dyson equation implicit in equation (2.6), and a determination
of G(ω) in this way is not obligatory; indeed there may be good reasons to avoid it, notably
the inability of conventional perturbation theory to handle strong correlations in general. The
LMA thus eschews such an approach, focusing instead on a two-self-energy description that
is a natural consequence of the mean-field approach from which it starts. In this section we
consider briefly the implications of such, in a manner that is neither dependent on the essential
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details of practical implementation (section 4.1) nor confined to the particle–hole symmetric
case considered hitherto [27–32].

There are three essential elements to the LMA:

(i) First that local moments (‘µ’), viewed as the primary effect of interactions, are introduced
explicitly from the outset. As in Anderson’s original work [1], the starting point is
thus simple static mean-field (MF), i.e. unrestricted Hartree–Fock (HF). This contains in
general two degenerate broken symmetry MF states (reflecting the invariance of Ĥ under
σ ↔ −σ ); denoted by α = A or B and corresponding respectively to local moments
µ = +|µ| and −|µ|. Notwithstanding the severe limitations of MF by itself, it may
nonetheless be used as a basis for a genuine many-body approach encompassing the
correlated electron dynamics that are the essence e.g. of Kondo physics.

(ii) To this end the LMA employs the two-self-energy description that follows naturally from
the underlying two mean-field saddle points; with non-trivial dynamics introduced in
practice (section 4.1) into the associated self-energies via coupling of single-particle
excitations to low-energy transverse spin fluctuations.

(iii) The final, central notion behind the LMA is that of SR: self-consistent restoration of the
broken symmetry endemic at mean-field level, and recovery of Fermi liquid behaviour, as
pursued below.

Within the LMA, G(ω) is expressed formally as

G(ω) = 1
2

∑
α

Gασ (ω) (3.1a)

with propagators Gασ (ω) = [g−1(ω)− �̃ασ (ω)]−1 built from the appropriate MF state α = A
or B, and self-energies separated as �̃ασ (ω) = �̃0

ασ + �ασ (ω) into a purely static contribution
�̃0

ασ that alone is retained at pure MF level; together with �ασ (ω) = �ασ [{Gασ }] that in
particular contains the key dynamics, and is a functional of (and built diagrammatically from)
the underlying MF propagators Gασ (ω). The first, brief issue here is rotational invariance: the
fact that G(ω) is independent of spin, σ . This is correctly preserved, since the invariance of
Ĥ under σ ↔ −σ implies GAσ (ω) = GB−σ (ω); whence the sum in equation (3.1a) is indeed
σ -independent. By the same token, equation (3.1a) may be written as

G(ω) = 1
2

∑
σ

Gασ (ω) (3.1b)

involving a ‘spin sum’ that is independent of α. Equations (3.1a), (3.1b) are entirely equivalent.
We choose to work with the latter form and, since the label α is redundant, we drop it from
now on.

The impurity Green function is thus

G(ω) = 1
2 [G↑(ω) + G↓(ω)] (3.2a)

with

Gσ (ω) = [g−1(ω) − �̃σ (ω)]−1 (3.2b)

and self-energies �̃σ (ω) = �̃R
σ (ω) − i sgn(ω)�̃I

σ (ω) separated as

(3.3)

with �̃0
σ given by the static bubble diagram (and ‘everything else’ in �σ (ω)).
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The conventional single self-energy �(ω) follows directly from an underlying two-self-
energy description, being given on comparison of equations (2.6) and (3.2a), (3.2b) by

�(ω) = 1

2
[�̃↑(ω) + �̃↓(ω)] +

[ 1
2 (�̃↑(ω) − �̃↓(ω))]2

g−1(ω) − 1
2 (�̃↑(ω) + �̃↓(ω))

(3.4)

with g(ω) the non-interacting propagator equation (2.3). At the pure MF level of unrestricted
HF, the dynamics of �̃σ (ω) is neglected and �̃σ (ω) ≡ �̃0

σ = U
2 (n − σ |µ|) (with the local

charge (n) and moment (|µ|) determined self-consistently in the usual way, section 3.1); from
equation (3.4) the corresponding self-energy is then:

�HF(ω) = U

2
n +

( 1
2 U |µ|)2

ω+ − [
εi + U

2 n
] − �(ω)

. (3.5)

The problem with MF by itself is clear, for if |µ| �= 0 then �I(ω = 0) �= 0 and Fermi liquid
behaviour is violated. This is not surprising, for the resultant degenerate local moment state
is not perturbatively connected to the non-interacting limit; but it is no less wrong for that
and, despite the physical appeal of local moment formation, is a major reason why MF has
not hitherto provided a successful basis for a many-body approach. This problem does not
of course occur if |µ| = 0 is enforced (restricted HF), but there another one arises. The
two- and single-self-energy descriptions then coincide, and �HF(ω) = U

2 n (≡�̃0
σ ) is just

the static Hartree contribution. This produces a trivial energy shift to the non-interacting
propagator, and subsequent construction of the dynamical �(ω) via conventional perturbation
theory in U is essentially equivalent to expanding about the restricted HF state. But when local
moments can form at MF level, this saddle point—in contrast to those of unrestricted HF—is
unstable (a local maximum, with the single restricted HF determinant unstable to particle–
hole excitations). And it is this that underlies at heart the divergences that plague conventional
perturbation theory [2] if one attempts to perform the more or less standard diagrammatic
resummations (e.g. RPA) that one might expect are required to capture the regime of strong
correlations. We do not of course doubt the applicability in principle of perturbation theory in
U—for the metallic AIM; but practice is another matter.

The LMA in a sense seeks the best of both worlds: to retain the two-self-energy description
with the notion of local moments (and essential stability of the underlying MF state), while
incorporating dynamics into the associated self-energies �̃σ (ω) in such a way that the resultant
description is simple and tractable, and yet recovers Fermi liquid behaviour at low energies.

3.1. Symmetry restoration

The first question here is the latter point: under what conditions on the �̃σ (ω)s will the single
�(ω) exhibit Fermi liquid behaviour at low ω, i.e. �I(ω) ∼ O(ω2)? To answer this, consider
a simple low-ω expansion of the �̃σ (ω)s (equation (3.3)), namely

�̃R
σ (ω) ∼ �̃R

σ (0) −
[

1

Zσ

− 1

]
ω (3.6a)

for the real parts, where Zσ = [1 − (∂�R
σ (ω)/∂ω)ω=0]−1 is thus defined and no a priori

constraints are imposed on �̃R
σ (0) = �̃0

σ + �σ (ω = 0) at the Fermi level ω = 0; together with

(�̃I
σ (ω) ≡) �I

σ (ω) ∼ aσω2 (3.6b)

for the imaginary part. The latter form is guaranteed from the diagrams (see section 4)
for �σ (ω) ≡ �σ [{Gσ }] provided the host is metallic (�0 �= 0, as appropriate to the
metallic AIM), but we emphasize is not sufficient by itself to guarantee �I(ω) ∼ O(ω2).
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Equations (3.6a), (3.6b), together (if appropriate) with a low-ω expansion of the hybridization
�(ω), may then be used in equation (3.4) to determine the low-ω behaviour of the resultant
single self-energy. This is a matter of algebra, and we find thereby that the necessary/sufficient
condition for

�I(ω) ∼ O(ω2) (3.7)

is that:

�̃R
↑ (ω = 0) = �̃R

↓ (ω = 0). (3.8)

If equation (3.8) is satisfied, then from equations (3.4) and (3.6a), (3.6b) (i) all self-energies
coincide at the Fermi level,

�R(ω = 0) = �̃R
σ (ω = 0) (3.9)

(for either σ ); (ii) the low-ω behaviour of �R(ω) is

�R(ω) ∼ �R(0) −
(

1

Z
− 1

)
ω (3.10)

with the usual quasiparticle weight Z = [1 − (∂�R(ω)/∂ω)ω=0]−1 related to the {Zσ } by
Z−1 = 1

2 (Z−1
↑ + Z−1

↓ ); and (iii) the quasiparticle form equation (2.7) for G(ω) is recovered.
Equation (3.8), referring solely to the Fermi level ω = 0, is the SR condition that is

central to the LMA; and which, if satisfied, guarantees Fermi liquid behaviour. It is quite
general, meaning not confined to the particle–hole symmetric AIM considered hitherto (which
is recovered as a particular case of the above, but was originally argued for [27, 28] on different,
symmetry-specific grounds). The general consequences of SR in practice are nonetheless as
found for the symmetric model [27, 28]: self-consistent imposition of equation (3.8) amounts
(section 4) to a self-consistency condition for the local moment |µ| and, most importantly,
generates a low-energy spin-flip scale ωm. The latter, manifest in particular as a strong
resonance in the transverse spin polarization propagator Im �+−(ω), is the Kondo scale,
exponentially small in strong coupling; its physical significance in the approach being that
it sets the timescale τ ∼ h/ωm for restoration of the broken symmetry inherent at crude MF
level (and arising in effect from dynamical tunnelling between the degenerate MF minima).
We also add that if the SR condition equation (3.8) cannot be satisfied, then a doubly degenerate
local moment phase results [32] (with a characteristic spin-flip scale ωm = 0 reflecting the
local degeneracy, and hence τ = ∞). While this does not arise for the metallic AIM where
SR is ubiquitously satisfied, it is the self-consistent possibility of such embodied in SR that
enables the LMA to capture [32] e.g. the quantum phase transition from a (generalized) Fermi
liquid to a local moment state in the soft-gap AIM (�I(ω) ∼ |ω|r ) [34] where both phases
arise.

Finally, note that with the SR condition equation (3.8) satisfied, the Friedel sum rule
equation (2.8) may be written as

εi + �̃R
σ (ω = 0) = �0 tan

[
π

2
(1 − nimp)

]
(3.11)

(independent of σ ). And for later use, the LMA Gσ (ω)s may then be expressed using
equations (3.2b) and (3.3) as

Gσ (ω) =
[
ω+ − �(ω) − �0 tan

[
π

2
(1 − nimp)

]
− (�σ (ω) − �σ (0))

]−1

(3.12a)

being dependent only on the ‘non-MF’ contributions (�σ(ω)) to �̃σ (ω); such that nimp is given
via equation (2.9a) (using equation (3.2)) by

nimp =
∑

σ

Im
∫ 0

−∞
dω

π
Gσ (ω)

[
1 − ∂�(ω)

∂ω

]
. (3.12b)
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The Friedel sum rule is not however satisfied by approximate theories in general, save for
the particle–hole symmetric case where it is guaranteed by symmetry. That is true e.g. of
the NCA [38], and even for conventional second-order perturbation theory in U [12], where
nimp inferred from εi + �R(0) = �0 tan[ π

2 (1 − nimp)] (equation (2.8)) using the second-order
�R(0) does not coincide with nimp obtained from spectral integration. Satisfaction of the
Friedel sum rule, which is distinct from the issue of SR, is however desirable if possible [14];
and in section 4 we also show how to incorporate it naturally within the LMA. The Friedel sum
rule is also satisfied in the modified perturbation scheme [14], where the single self-energy
(excluding the Hartree piece) is parametrized in the form �(ω) � A�

(2)

0 (ω)[1− B�
(2)

0 (ω)]−1;
with �

(2)

0 (ω) the second-order self-energy constructed from non-interacting Green functions
containing a shifted chemical potential µ̃0. The parameters A, B, µ̃0 are then found [14] by
requiring that �(ω) has the correct high-frequency behaviour (in 1/ω), that the atomic limit is
recovered and that the Friedel sum rule is satisfied. While simple and practicable, the approach
is however too crude to handle e.g. the Kondo regime (as evident for example in the fact that
for the symmetric AIM where B = 0 and A = 1, �(ω) � �

(2)

0 (ω) reduces to straight second-
order perturbation theory and hence produces a Kondo scale that is algebraically rather than
exponentially small in Ũ ).

3.2. Mean field

Before proceeding we reprise briefly elements of pure MF that will be required in the following
sections (full details are given in [1]). The MF propagators Gσ (ω) may be expressed as
Gσ (ω) = [ω+ − εiσ − �(ω)]−1 with εiσ = εi + �̃0

σ = εi + U
2 (n − σ |µ|); and n, |µ| found

self-consistently at pure MF level via 〈n̂i↑ ± n̂i↓〉0 respectively (with 〈· · ·〉0 a MF average). The
corresponding spectra D0

σ (ω) ≡ D0
σ (ω; ei, x) are given (for the wide-band host explicitly) by

D0
σ (ω) = �0π

−1

[ω − ei + σ x]2 + �2
0

(3.13)

where x = 1
2 U |µ| and ei = εi + U

2 n. The MF charge and moment are thus found from
self-consistent solution of

|µ| =
∑

σ

σ

∫ 0

−∞
dω D0

σ (ω; ei, x) (3.14a)

n =
∑

σ

∫ 0

−∞
dω D0

σ (ω; ei, x). (3.14b)

We choose for later convenience to work at fixed U ; in which case the MF |µ| follows by
solution of equation (3.14a) for given ei, the charge n follows directly from equation (3.14b)
and the corresponding ‘bare’ εi then follows immediately from εi = ei − U

2 n.
The boundary to local moment formation at MF level is readily deduced from

equations (3.14a), (3.14b) and is given in closed from by

ηc = ± 2

π

[
tan−1

(√
Ũ ′

c − 1

)
+

√
Ũ ′

c − 1

Ũ ′
c

]
(3.15)

(which recovers figure 4 of [1]), where Ũ ′ = Ũ/π and η is the asymmetry (equation (2.2));
such that the MF |µ| > 0 for any given |η| < 1 when Ũ ′ > Ũ ′

c (or equivalently for all |η| < |ηc|
and any given Ũ ′ > 1).
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4. LMA: practice

In this section we consider first the approach to solving the problem generally within the
LMA framework, for an essentially arbitrary approximation to the self-energies �̃σ (ω); before
turning in section 4.1 to the specific class of diagrams retained in practice, and the key
consequences of stability and SR.

The LMA self-energies �̃σ (ω) (equation (3.3)) are functionals of the MF propagators,
namely Gσ (ω) = [ω+ − ei + σ x − �(ω)]−1 (with corresponding spectral density D0

σ (ω) ≡
D0

σ (ω; ei, x), equation (3.13)). With interactions included beyond MF level, x = 1
2 U |µ| and

ei are determined self-consistently as below and naturally differ from their pure MF values; so
for clarity the latter are denoted from now on as x0 = 1

2 U |µ0| and e0
i = εi + U

2 n0 (as obtained
from the pure MF equations (3.14)). Equation (3.3) for �̃σ (ω) is given by

�̃σ (ω) = U

2
[n̄ − σ |µ̄|] + �σ (ω) (4.1)

where the first term is the static bubble diagram, �̃0
σ = U

∫ 0
−∞ dω D0−σ (ω; ei, x); and

|µ̄| ≡ |µ̄(ei, x)| and n̄ ≡ n̄(ei, x) are given by

|µ̄| =
∑

σ

σ

∫ 0

−∞
dω D0

σ (ω; ei, x) (4.2a)

|n̄| =
∑

σ

∫ 0

−∞
dω D0

σ (ω; ei, x). (4.2b)

It is of course the ‘post-MF’ contribution, �σ (ω), that is all important; and a suitable, naturally
approximate choice for which determines the extent to which the key physics of the problem
is captured in practice. That is considered in section 4, but for the present assume �σ (ω) ≡
�σ [{Gσ (ω)}] to be given. It depends generally on U (via the diagrammatic interaction vertices)
and, since it is a functional of {Gσ }, upon ei and x ; i.e. �σ (ω) ≡ �σ (ω; ei, x) (with the U -
dependence implicit). The SR condition equation (3.8) is then of form:

�R
↑ (ω = 0; ei, x) − �R

↓ (ω = 0; ei, x) = U |µ̄(ei, x)|. (4.3)

And the Friedel sum rule equation (3.11) (equivalent to the Luttinger theorem [36]) is given
by

εi +
U

2
[n̄(ei, x) − σ |µ̄(ei, x)|] + �R

σ (ω = 0; ei, x) = �0 tan

[
π

2
(1 − nimp)

]
(4.4)

(independently of σ ).
The problem may then be solved in the following natural way,considered for (any) fixed U :

(i) For given ei (or x), the SR condition equation (4.3) is solved for x = 1
2 U |µ| (or ei).

(ii) nimp is then obtained by solution of equations (3.12).
(iii) All quantities in equation (4.4) save εi are then known, whence the bare εi follows directly

from equation (4.4).

Alternatively, if one wishes to specify a bare εi from the outset, the procedure may be repeated
by varying ei until equation (4.4) is satisfied. The method above is straightforward, and in
particular we remind the reader that (see section 3) satisfaction of SR (step (i)) guarantees the
requisite low-energy Fermi liquid behaviour. As considered in practice (section 4.1 ff) it is
also numerically rapid, with each of the iterative steps (i) and (ii) typically found to converge
after a small number of iterations.
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Using the symmetry Gσ (ω; ei, x) = −G−σ (−ω; −ei, x) together with the general
diagrammatic structure of �̃σ (ω) ≡ �̃σ [{Gσ }], it can moreover be shown that Gσ (ω; ei, x) =
−G−σ (−ω; −ei, x) and �̃σ (ω; ei, x) = U − �̃−σ (−ω; −ei, x); and in consequence that if
(x, nimp, εi) is a solution of the above equations for ei = α, then (x, 2 − nimp,−[εi + U ])
is also a solution for ei = −α. In other words the particle–hole transformation mentioned
in section 2, under which εi → −[εi + U ] and nimp → 2 − nimp, corresponds to ei → −ei

(with Dσ (ω; εi) = D−σ (−ω; −[εi + U ]) such that equation (2.11) follows directly, since
D(ω) = 1

2

∑
σ Dσ (ω)). From this it follows in turn that only ei � 0 need be considered

(corresponding to nimp � 1); and that the particle–hole symmetric AIM, for which εi = −U
2

and nimp = 1, corresponds to ei = 0. For the latter case, steps (ii) and (iii) above are
redundant, the Friedel sum rule equation (4.4) being guaranteed by particle–hole symmetry
since �̃R

σ (ω = 0) = U
2 in that case; and solely the central SR condition equation (4.3) need

be solved. The problem then becomes that considered previously [27, 28] (noting that �̃σ (ω)

used therein is defined to exclude the Hartree contribution of U
2 ), with one minor exception:

namely that in [27–32] |µ| itself rather than |µ̄| was employed on the right-hand side of
equation (4.3). (The latter, used here, is technically correct; although we have confirmed that
the results of [27–32] are entirely unaffected by this replacement.)

4.1. Self-energies

The specific class of diagrams contributing to �σ (ω) ≡ �σ [{Gσ }] which we retain in practice
is precisely that considered hitherto for the symmetric AIM [27–32]; shown in figure 1 and
translating to

�σ (ω) = U 2
∫ ∞

−∞
dω1

2π i
G−σ (ω − ω1)�

−σσ (ω1). (4.5)

Physically, these diagrams capture dynamical spin-flip scattering processes: in which having,
say, added a σ -spin electron to a −σ -spin occupied impurity, the latter hops off the impurity
and thus generates an on-site spin-flip (reflected in the transverse spin polarization propagator
�−σσ (ω)), before returning again at a later time. At the simplest level, likewise considered
here, the polarization propagator is given by an RPA-like particle–hole ladder sum in the
transverse spin channel; specifically

�σ−σ (ω) = 0�σ−σ (ω)[1 − U 0�σ−σ (ω)]−1 (4.6)

with 0�σ−σ (ω) the bare particle–hole bubble, itself expressed in terms of the broken symmetry
MF propagators {Gσ }. Further details regarding the �σ (ω) diagrams and their physical content
are given in [27, 32] (see e.g. figure 3 of [32]). The full LMA self-energies �̃σ (ω) follow
directly from equations (4.1), (4.5).

Retention of the above diagrams for �σ (ω) is motivated primarily on physical grounds,
since they embody the dynamical coupling of single-particle excitations to low-energy
transverse spin fluctuations that is essential to capture in particular the strong coupling Kondo
regime. Other classes of diagrams are readily retained, notably those shown in figure 9 of [27]
involving repeated particle–particle interactions in the transverse spin channel, as well as
the repeated ‘bubble’ sum. But we find these to have little effect on the results given here,
and that the class retained appears to handle rather well essentially all regimes of the AIM,
from Kondo to empty orbital; reflecting at least in part the fact that the present approach
asymptotically recovers straight second-order perturbation theory in U in the weak coupling
domain appropriate to the empty orbital regime (as will be shown explicitly in section 5.2).
Finally, although the atomic limit �0 = 0 is not perturbatively connected to the generic case
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Figure 1. Principal contribution to the LMA �σ (ω), see text. Wavy lines denote U .

of non-zero hybridization strength, we add that the present approach recovers it exactly. Here
�σ (ω) = 0 and simple MF alone is exact, encompassing both the n = 0 (εi > 0 ≡ EF) and
n = 2 (εi + U < 0) regimes as well as the doubly degenerate local moment state arising in the
singly occupied regime where εi < 0 < εi + U . This of course is just a simple consequence
of the fact that we work in general with broken symmetry MF propagators; but we note that
recovery of the atomic limit is not at all a trivial matter if one seeks to obtain it via conventional
perturbative methods, save for the accidental case of the symmetric AIM [2] where second-
order perturbation theory in U happens to be exact in the atomic limit.

Since the diagrams for �σ (ω) have the same functional dependence on {Gσ } as considered
in [27] for the symmetric AIM, most of the specific analysis of sections 2.2, 3.2 of [27] goes
through unaltered. We thus reprise only two required results, before focusing on the central
issues of stability and SR. First, independent of particle–hole symmetry, the 0�σ−σ (ω) (and
hence �σ−σ (ω)) satisfy 0�+−(ω) = 0�−+(−ω). Only one polarization propagator need thus
be considered, say 0�+−(ω); and for later use below, Im 0�σ−σ (ω) � 0∀ω, and vanishes
linearly in |ω| as ω → 0:

1

π
Im 0�+−(ω)

ω→0∼ |ω|D0
↓(0)D0

↑(0). (4.7)

Second, the real/imaginary parts of 0�+−(ω) and �+−(ω) are related by the Hilbert transform

�+−(ω) =
∫ ∞

−∞
dω1

π

Im �+−(ω1) sgn(ω1)

ω1 − ω+
. (4.8)

Using this, together with �−σσ (ω1) = �σ−σ (−ω1), equation (4.5) may be expressed as

�σ (ω) = U 2
∫ ∞

−∞
dω1

π
Im �σ−σ (ω1)[θ(ω1)G−

−σ (ω1 + ω) + θ(−ω1)G+
−σ (ω1 + ω)] (4.9)

where

G±
σ (ω) =

∫ ∞

−∞
dω1

D0
σ (ω1)θ(±ω1)

ω − ω1 ± i0+
(4.10)

denote the one-sided Hilbert transforms such that Gσ (ω) = G+
σ (ω) + G−

σ (ω); and θ(ω) is the
unit step function.

We turn now to the important issue of stability, namely (from equation (4.8)) that
π Re �+−(ω = 0) = ∫ ∞

−∞ dω1 Im �+−(ω1)/|ω1| > 0 of necessity. For this to be satisfied,
using equation (4.6) and that Im 0�+−(ω = 0) = 0 (equation (4.7)), it follows that

0 < U Re 0�+−(ω = 0) � 1 (4.11)
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Figure 2. Dashed line: stability border in the (ei, |µ|) plane for fixed Ũ = 4π . Solid line:
corresponding solution of the SR equation (4.3). Full discussion in text.

is required. An explicit expression for Re 0�+−(0) can however be obtained in direct parallel
to that in [27] for the symmetric AIM; and is given by

U Re 0�+−(ω = 0) = |µ̄(ei, x)|
|µ| (4.12)

with |µ̄(ei, x)| given by equation (4.2a) (and x = 1
2 U |µ|). For (any) given U , the contour

U Re 0�+−(ω = 0; ei, x) = 1 in the (ei, |µ|) plane encloses a region of instability where
U Re 0�+−(ω = 0; ei, x) > 1 and the positivity condition Re �+−(ω = 0) > 0 is violated;
outside this region by contrast, U Re 0�+−(ω = 0; ei, x) � 1 and stability is guaranteed. This
is illustrated in figure 2 which, for Ũ = U/�0 = 4π (and the wide-band AIM in practice),
shows the stability border in the (ei, |µ|) plane.

Three important points should be noted here:

(i) First, the divergences alluded to in section 3 that bedevil standard diagrammatic
resummations based on perturbation theory in U—and thus employing restricted HF
propagators (where |µ| = 0 is enforced)—arise from violation of the stability condition
and hence analyticity; as is evident from figure 2 for e.g. the symmetric AIM
(corresponding to ei = 0 as explained above). This deficiency, reflecting the associated
instability of the restricted HF saddle point to local moment formation, does not arise in
the present approach; which is why diagrammatic resummations of essentially standard
form, but expressed in terms of broken symmetry MF propagators Gσ , may be used with
impunity.

(ii) The stability border, illustrated in figure 2, corresponds precisely to the pure MF local
moment, denoted by |µ0| ≡ |µ0(ei)|; for at pure MF level the local moment is obtained
for any U as the self-consistent solution of |µ0| = |µ̄(ei,

1
2 U |µ0|)| (equation (3.14a)), and

hence U 0�+−(ω = 0; ei, x0) = 1 from equation (4.12). In consequence the transverse
spin polarization propagator �+−(ω) (equation (4.6)) contains a pole at ω = 0, arising
physically because the pure MF state is a degenerate doublet with no energy cost for a
local spin-flip. This behaviour is correct for a local moment phase [32], and thus in the
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present context for the singly occupied regime in the atomic limit �0 = 0; but it is not
of course correct for the ubiquitous Fermi liquid state characteristic of the metallic AIM
with �0 �= 0, where the characteristic energy for spin-flips is on the order of the Kondo
scale. The key point here, however, is that this behaviour is specific solely to the pure MF
level of self-consistency: from equation (4.12), U Re 0�+−(ω = 0; ei, x) = 1 only if |µ|
is determined by the pure MF self-consistency equation, such that |µ| = |µ0(ei)|.

(iii) And within the LMA it is the SR condition equation (4.3) that, quite generally, determines
the local moment |µ| (or equivalently x = 1

2 U |µ|), as explained in the previous section.
In consequence, Im �+−(ω) will contain not a zero-frequency spin-flip pole but rather a
resonance centred on a non-zero frequency ωm.

This is the Kondo scale. Its origin within the LMA thus stems from self-consistent imposition
of SR; and since the latter guarantees Fermi liquid behaviour at low energies as explained
in section 3, its physical content is that it sets the timescale τ ∼ h/ωm for restoration of the
broken symmetry/degeneracyendemic at pure MF level. The solutions of the SR equation (4.3)
in the (ei, |µ|) plane are illustrated in figure 2 for Ũ = 4π ; and are also seen correctly
to satisfy the stability criterion (as is always found in practice). We add further that the
above behaviour of Im �+−(ω), arising for the AIM generically, is illustrated e.g. in figure 2
of [27] for the symmetric model; and that the analytic description of Im �+−(ω) given by
equations (2.34), (2.35) of [27] applies mutatis mutandis to the asymmetric case.

Finally, referring to equation (4.9) for �σ (ω), it follows using Im G±
σ (ω) =

∓π D0
σ (ω)θ(±ω) that

�I
σ (ω) = θ(−ω)U 2

∫ |ω|

0
dω1 Im �σ−σ (ω1)D0

−σ (ω1 + ω)

+ θ(ω)U 2
∫ 0

−|ω|
dω1 Im �σ−σ (ω1)D0

−σ (ω1 + ω). (4.13)

such that �I
σ (ω) � 0 (since Im �σ−σ (ω) and D0

σ (ω) are positive semidefinite), as required by
analyticity. Using U Re 0�+−(ω = 0) < 1 (stability), it also follows from equations (4.6), (4.7)
that Im �σ−σ (ω) itself vanishes linearly in |ω| as ω → 0; and hence from equation (4.13) that
�I

σ (ω) ∼ O(ω2) as ω → 0, as stated/used in section 3 (equation (3.6b)).

5. Results

We now turn to results arising from the LMA in practice, i.e. with �σ (ω) given approximately
by equation (4.9). The strong coupling Kondo regime, including the question of universal
spectral scaling therein, is considered in section 5.1; and the mixed valence and empty orbital
regimes in section 5.2. The results are obtained straightforwardly: equations (4.3), (4.4)
and (3.12) are solved via the direct scheme described at the beginning of section 4, the self-
energies �̃σ (ω) then follow via equation (4.1), and the impurity Green function and hence
single-particle spectrum D(ω) from equation (3.2).

By way of overview figure 3 shows the resultant π�0 D(ω) versus ω̃ = ω/�0 on all
energy scales, for ε̃i = εi/�0 = −4 and Ũ = U/�0 = 12, corresponding to an asymmetry
(equation (2.2)) of η = 1

3 . The strong coupling Kondo limit, where spectral scaling arises
and the low-ω behaviour of the AIM maps onto the Kondo model, corresponds strictly to
nimp → 1 (section 2); although the Kondo regime is often regarded more loosely as spanning
charges in the interval 0.8 � nimp � 1 (with nimp = n for the wide-band model considered).
The example shown in figure 3 pertains to the Kondo regime, with nimp � 0.93; and the
central Kondo resonance is shown on progressively expanded scales in the insets. The spectral
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Figure 3. Single-particle spectrum π�0 D(ω) versus ω̃ = ω/�0 for ε̃i = εi/�0 = −4 and
Ũ = U/�0 = 12 (corresponding to an asymmetry η = 1

3 ). The MF spectrum is shown for
comparison (dotted curve). Insets: low-energy Kondo resonance on progressively expanded scales.

asymmetry on essentially all energy scales is evident: in the expected relative disposition of
the high-energy Hubbard satellites centred on ω � −|εi| and U − |εi|; and in the overall
shape of the Kondo resonance (left inset), including the lowest scales (right inset). In the latter
case, since the Friedel sum rule is fully satisfied, π�0 D(ω = 0) = sin2[ π

2 nimp] is correctly
recovered; and since nimp < 1 the spectral maximum in D(ω) is then pushed slightly above
the Fermi level, in accordance with the quasiparticle form equation (2.7).

The qualitative deficiencies of the pure MF spectrum (also shown in figure 2) are directly
apparent, even on the high-energy scales of the Hubbard satellites. These show clearly
the effects of additional many-body broadening over and above the purely elastic scattering
processes captured at MF level; and the simple physical origin of which is the same as that
described in [27] for the symmetric AIM, leading as seen in figure 3 to a width doubling (and
peak intensity halving) of the satellites relative to those from pure MF.

5.1. Kondo scaling regime

Figure 4 illustrates the strong coupling Kondo regime where nimp → 1. In figure 4(a) spectral
evolution is shown at a fixed asymmetry η = 1−2|ε̃i|/Ũ = 0.2; with progressively increasing
Ũ = 25, 30, 35 such that both Hubbard satellites move steadily outwards with a fixed ratio
of their peak maxima. In figure 4(b) by contrast, ε̃i = −10 is fixed and Ũ = 2|ε̃i|/(1 − η)

is increased from the symmetric limit η = 0 through η = 0.1, 0.2, 0.3 and 0.4; such that the
lower satellite is ‘frozen’ while the upper, centred on ω ∼ U − |εi|, moves to progressively
higher energies. In both cases shown however, since nimp = 1 for all practical purposes, D(ω)

is peaked at the Fermi level ω = 0 such that π�0 D(0) = 1, as evident from the insets which
show the central Kondo resonance on the half-height scale. And with progressively increasing
Ũ in either case the Kondo scale, reflected in the width of the resonance, is rapidly decreasing.

The first question then is the behaviour of the Kondo scale in strong coupling, equivalently
the spin-flip scale ωm determined (see section 4) by SR. This may be obtained analytically
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Figure 4. (a) π�0 D(ω) versus ω̃ = ω/�0 for fixed asymmetry η ≡ 1 − 2|ε̃i|/Ũ = 0.2
and progressively increasing Ũ = 25, 30, 35. (b) Spectral evolution for fixed ε̃i = −10 and
progressively increasing Ũ = 2|ε̃i|/(1 − η) from η = 0 (symmetric limit) through η = 0.1, 0.2,
0.3, 0.4. Insets in either case: Kondo resonances versus ω̃, with increasing Ũ s from outside to inside.

within the present LMA; using initially, as now outlined, a generalization of the arguments
detailed in [27] for the symmetric model, and with reference to equation (4.9) for �σ (ω). In
the strong coupling Kondo regime, the spectral weight of Im �+−(ω) is confined entirely to
ω > 0, and

∫ ∞
0 (dω/π) Im �+−(ω) = 1; which behaviour reflects physically the saturation of

the local moment (|µ| → 1). The resonance in Im �+−(ω) is centred on the low-energy Kondo
spin-flip scale ωm, and on scales of this order G−

↓ (ω) is slowly varying; whence equation (4.9)
for �R

↑ (ω = 0) reduces asymptotically to �R
↑ (0) ∼ U 2 Re G−

↓ (ωm). But Re G−
↓ (ω) is given

by the one-sided Hilbert transform equation (4.10), which as ω → 0 is dominated by the log
singularity arising necessarily because the host is metallic (D0

↓(ω = 0) �= 0). This ω → 0
asymptotic behaviour is captured by Re G−

↓ (ω) ∼ D0
↓(0) ln[λ/|ω|]; where a high-energy cut-

off λ of order min[U, D] is employed (D here being the host bandwidth, if one wishes to
retain it as finite). The precise value of the cut-off is immaterial in the following analysis,
the key point being that the prefactor to the log divergence is precisely D0

↓(0). And in strong

coupling (where x = 1
2 U |µ| → 1

2 U ), D0
↓(0) is given asymptotically from equation (3.13) by

π D0
↓(0) ∼ �0[ei + 1

2 U ]−2. Hence the strong coupling asymptotic behaviour of �R
↑ (ω = 0) is:

�R
↑ (ω = 0) ∼ �0

π

U 2

(ei + 1
2 U)2

ln

[
λ

ωm

]
. (5.1a)
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A directly analogous argument may be used for �R
↓ (ω = 0), leading to �R

↓ (0) ∼
U 2 Re G+

↑(−ωm) ∼ −U 2 D0
↑(0) ln[λ/ωm]; and hence via equation (3.13) to:

�R
↓ (ω = 0) ∼ −�0

π

U 2

(ei − 1
2 U)2

ln

[
λ

ωm

]
. (5.1b)

The U and ei dependence of the Kondo spin-flip scale ωm now follows from the SR
condition equation (4.3), which in strong coupling (where |µ̄| → 1) reduces simply to
�R

↑ (0) − �R
↓ (0) = U ; and hence using equation (5.1):

ωm ∼ λ exp

( −π

2�0U

[e2
i − U2

4 ]2

[e2
i + U2

4 ]

)
. (5.2)

For the symmetric AIM (η = 1 − 2|εi|/U = 0), where ei = 0 (section 4), equation (5.2) alone
yields the Kondo scale; namely ωm ∼ λ exp[−πU/8�0] where the exponent is exact [27].
To determine ωm in general, the dependence of ei on the bare parameters εi and U is
naturally required. This may be obtained using the Friedel sum rule equation (4.4) which,
in the strong coupling regime where nimp, n̄ and |µ̄| → 1, gives the asymptotic behaviour
�R

↓ (ω = 0) ∼ |εi| − U . Combining this with equations (5.1b), (5.2) yields a simple quadratic
for ei with solution ei = [U − 2|εi|]/(4 f ); where f ≡ f (η2) is given by

f = 1
2 [1 + (1 − η2)

1
2 ] (5.3)

such that f ∈ [1, 1
2 ] for the η ∈ [0, 1] domain relevant (section 2) to the Kondo regime. The

resultant ei is now used in equation (5.2) for the Kondo scale ωm, to give

ωm ∼ λ exp

(
−π |εi|(U − |εi|)

2�0U

1

f

)
(5.4a)

= λ exp

(
− 1

2ρ J f

)
(5.4b)

where equation (2.13a) for ρ J appropriate to the Kondo model is used.
Equation (5.4) gives the strong coupling Kondo scale for the AIM arising from the present

LMA (as we have confirmed numerically). The exponent therein differs in general,by the factor
of f (η2) ∈ [1, 1

2 ], from the exact result for the Kondo model; which is given to leading order in
ρ J by [2] ωm ∝ exp(−1/2ρ J ) independently of the strength of potential scattering embodied
in K/J ≡ η. As such it is exact only for the symmetric model where η = 0 and f = 1 (although
we add that f is slowly varying in η, lying e.g. within 10% of unity for η < 0.6). Nonetheless
we regard recovery of an exponentially small Kondo scale, approximate in general but close to
the exact result in an obvious sense, as a non-trivial outcome of the present theory. Moreover,
provided the resultant Kondo scale is exponentially small in strong coupling (and hence that
a clear separation between high- and low-energy scales arises), its precise dependence on the
bare material parameters is nigh on irrelevant to the central question of scaling in the Kondo
regime; namely the behaviour of the single-particle spectrum D(ω) ≡ F(ω/ωm) as a function
of ω/ωm in the formal Kondo limit ωm → 0. This is known from previous work on the
symmetric AIM [28]. Here, although the exponent in equation (5.4) for ωm is exact, the
prefactor λ is simply a high-energy cut-off and certainly approximate; and yet in comparison
to NRG calculations [33] the resultant universal scaling spectrum of the symmetric model is
captured quantitatively by the LMA (see e.g. figures 2, 3 of [28]). It is to the questions of
scaling for the asymmetric AIM that we now turn.
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Figure 5. The Kondo scaling regime. (a) π�0 D(ω) versus ω/ωm for fixed asymmetry
η ≡ 1 − 2|ε̃i|/Ũ = 0.2 and increasing Ũ = 25, 30, 35 (cf figure 4(a)). The spectra collapse
to a common scaling form. (b) The resultant scaling spectrum for η = 0.5 (solid curve); also
shown are the |ω|/ωm � 1 tails of the scaling spectra for η = 0 (dotted curve) and η = 0.2 (dashed
curve). Inset: scaled Kondo resonances at higher resolution for η = 0 (dotted curve), 0.2 (dashed
curve) and 0.5 (solid curve).

Spectral scaling. The first issue in regard to spectral scaling in the Kondo regime is: does the
asymmetry/potential scattering η ≡ K/J play a role? At first sight one might be tempted to
answer no; arguing, pace for example the Kondo Hamiltonian equation (2.12), that potential
scattering can be largely eliminated via a suitable canonical transformation of the host band
{c†

kσ }. And as far as the scaling spectrum is concerned this is correct at the Fermi level ω = 0;
where, as explained in section 2 and in accordance with the quasiparticle form equation (2.7)
for G(ω), π�0 D(ω = 0) = 1 provided nimp = 1 but regardless of how the Kondo limit
nimp → 1 is reached (i.e. independently of η). Indeed if one extrapolates the quasiparticle
form equation (2.7) beyond its domain of applicability as the limiting low-ω behaviour of
G(ω), as e.g. in microscopic Fermi liquid theory to lowest order [2], the resultant scaling
spectrum D(ω) ≡ F(ω/�0 Z) for nimp = 1 (where ε ′

i = 0) is a simple Lorentzian centred on
ω = 0 and with no η-dependence; which conclusion arises also if D(ω) is approximated by
the local spinon spectrum [25].

If however the effects of potential scattering were entirely irrelevant, then the scaling
spectrum would obviously coincide with that for the symmetric model (η = 0) [33], and as
such D(ω) = D(−ω) would be symmetric about the Fermi level for all ω/ωm (or ω/�0 Z )
and any η ∈ [0, 1]. Such behaviour is in our view rather implausible, and we are not aware of a
convincing general argument for it. Within the usual U = ∞ NCA [17–19] with nimp � 1 for
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example, the low-energy Kondo resonance is certainly asymmetric in ω (albeit not correctly
centred on ω = 0 as nimp → 1 since the Friedel sum rule is not consistently satisfied [38]).
Neither would it square readily with NRG results [39] for the asymmetric AIM, which show
an evident asymmetry in the ω-dependence of the low-energy D(ω) in the Kondo regime—see
e.g. figure 5 of [39]; the only counter-argument to which being (we believe improbably) that
the latter calculations, obtained for fixed Ũ = 4π by varying ε̃i = −|ε̃i|, are insufficiently
close to the Kondo limit to eliminate asymmetry in the Kondo resonance.

If then the potential scattering/asymmetry embodied in η = 1 − 2|ε̃i|/Ũ ≡ K/J is not
irrelevant, the obvious question is how it influences the scaling behaviour of D(ω). Within the
LMA as now shown, the answer is that a continuous family of universal scaling spectra arise;
D(ω) ≡ F(ω/ωm) exhibiting one-parameter scaling in terms of ω/ωm for each η ∈ [0, 1]
(which is consistent with the known line of RG fixed points [9], one for each K ). For fixed
η = 1 − 2|ε̃i|/Ũ = 0.2, figure 4(a) above shows π�0 D(ω) versus the ‘absolute’ frequency
ω̃ = ω/�0, for increasing Ũ = 25, 30, 35; with the corresponding behaviour of the Kondo
resonances shown in the inset. As shown in figure 5(a), the Kondo resonances for the same data
collapse to a common form when expressed in terms of ω/ωm, yielding the η = 0.2 scaling
spectrum discussed further below (we add here only that, as discussed in [27, 28], the small
feature at ω/ωm � 1 is entirely an artefact of the specific RPA-like form for the Im �+−(ω)

employed here; it can be removed, but we are content to live with it in the following). Collapse
to a scaling form occurs for each η with increasing Ũ , and figure 5(b) shows the η = 0.5
scaling spectrum (solid line). The inset thereto compares the central portion of the scaled
Kondo resonance for η = 0, 0.2 and 0.5; from which the increasing asymmetry with η is
evident, modest though it is on the scales shown. The asymmetry induced by increasing η is
more clearly evident in the ‘tails’ of the scaling spectra, which for |ω|/ωm � 1 are also shown
in figure 5(b) for η = 0, 0.2 and 0.5.

The first point to note about the LMA scaling spectra is that they are not of the Lorentzian
form suggested by simplistic approaches. While the quasiparticle form is correctly recovered
at sufficiently low frequencies |ω|/ωm 
 1 (section 3), the scaling spectra are by contrast
dominated for |ω|/ωm � 1 by the long, slowly varying tails evident in figure 5. From a recent
LMA study of the symmetric AIM in strong coupling [28], these are known to exhibit a very
slow logarithmic decay, and to give excellent agreement with NRG scaling spectra [33] (see
e.g. figure 2 of [28]).

The logarithmic tails naturally persist when η �= 0, and in parallel to [28] it is likewise
possible to determine analytically their |ω′| = |ω|/ωm � 1 asymptotic behaviour. For
ω′ = |ω′| � 1 we thereby find

π�0 D(ω) ∼ 1

2

{
1

[ 4
π

g+ ln |ω′|]2 + 1
+

(1 + 4g−)

[ 4
π

g− ln |ω′|]2 + [1 + 4g−]2

}
(5.5)

the (asymmetry) η-dependence of which is embodied in the factors g±(η) = f (η2)[1 ± η]−1

(with f from equation (5.3)). For negative ω and |ω′| � 1 by contrast, π�0 D(ω) is again
given by the form equation (5.5), but with g+ and g− simply interchanged. In the symmetric
case where g±(0) = 1, equation (5.5) reduces to the result compared to NRG calculations
in [28]. It reproduces quantitatively the ω′- and η-dependences of the spectral tails shown
in figure 5 for |ω′| � 10 or so, and is quite satisfactory down to |ω′| � 2; although since
η = 1 − 2|ε̃i|/Ũ ≡ K/J involves a ratio of ‘bare’ parameters, the η-dependence of g± is
undoubtedly approximate save for the symmetric case.

Finally, we add that since universal spectral scaling arises for fixed η = 1 − 2|ε̃i|/Ũ
upon increasing Ũ , it does not therefore arise on increasing Ũ for fixed |ε̃i| = −ε̃i (or vice
versa). For example the Kondo resonances illustrated in figure 4(b) for fixed |ε̃i| = 10 and
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Figure 6. The Kondo regime. π�0 D(ω) versus ω̃ = ω/�0 for fixed Ũ = 4π and ε̃i = − Ũ
2

(dotted curve), −4, −3 and −2. Inset: corresponding Kondo resonances versus ω̃.

increasing Ũ do not collapse to a common scaling form when expressed as a function of ω/ωm,
since each corresponds to a different asymmetry η. We naturally expect the same conclusion
to apply at finite T , namely that D(ω; T ) ≡ F(ω/ωm; T/ωm) will exhibit universal scaling
only for fixed η; and hence also to the T/ωm scaling behaviour of transport properties such
as the resistivity, since these are determined (see e.g. [39]) via transport integrals in which the
transport rate τ−1(ω; T ) ∝ D(ω; T ).

5.2. Mixed valence and empty orbital regimes

Although we have focused latterly on scaling behaviour in the Kondo limit, the Kondo
regime of the AIM is usually regarded more generally as encompassing charges in the
interval 0.8 � nimp � 1; while the mixed valence (MV) and empty orbital (EO) regimes
of behaviour correspond respectively to 0.3 � nimp � 0.8 and nimp � 0.3. Here we consider
spectral evolution on all energy scales upon traversal of the Kondo, MV and EO regimes
by progressively increasing ε̃i from the symmetric limit ε̃i = −Ũ/2; for a fixed interaction
strength of Ũ = 4π , as considered in the NRG calculations of [39].

The Kondo regime is illustrated in figure 6 where π�0 D(ω) versus ω̃ = ω/�0 is shown
for ε̃i = −Ũ/2, −4, −3 and −2 (with nimp � 0.8 in the latter case and the resultant charges nimp

found to agree well with NRG results [38, 39], to which they are compared in figure 7 below).
We regard the agreement between figure 6 from the present LMA, and the corresponding NRG
results in figure 5 of [39], as rather good. The principal differences between the two reside first
in the Hubbard satellites which,we believe correctly, are more pronounced in the LMA; it being
known that NRG does not do full justice to the many-body broadening of the Hubbard satellites,
rendering them too diffuse [40]. And second, consistent with the expectation above,on the low-
energy scale of the Kondo resonance (figure 6 inset) the LMA does not capture quantitatively
the absolute value of the Kondo scale reflected e.g. in the resonance width; although the relative
evolution of the Kondo resonances with increasing ε̃i is respectably captured.

On further increasing ε̃i the MV regime is entered, where the impurity charge n ≡ nimp

drops quite rapidly with increasing ε̃i as the EO regime (ε̃i � 1–2) is approached; as evident
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Figure 7. Local impurity charge n ≡ nimp versus ε̃i for fixed Ũ = 4π . Solid circles: LMA. The
solid curve is a guide to the eye. Open squares: NRG results (from [39] for ε̃i � 1 and [38] for
ε̃i > 1). The non-interacting limit charge is also shown (dotted curve).

from figure 7 where the LMA nimp versus ε̃i is shown, and compared to corresponding NRG
results [38, 39]. Spectral evolution in the MV and into the EO regime is illustrated in
figure 8 for ε̃i = −1, 0, +1, +2, and likewise exhibits the characteristic behaviour found
in NRG calculations (see e.g. figure 8 of [39]). The Kondo regime is of course typified by
a clear separation of energy scales, reflected in the exponentially small quasiparticle weight
Z ∝ ωm/�0 and hence exponentially narrow Kondo resonance. This behaviour is lost quite
rapidly on entering the MV regime, where Z rises to become of order unity and the width of
the Kondo resonance correspondingly becomes of order �0, as evident from figure 8. This
is accompanied in turn by ‘loss’ of the lower Hubbard satellite, which becomes a barely
perceptible low-energy shoulder; and by concomitant intensity erosion of the upper Hubbard
satellite, although the latter remains a high-energy feature centred on ∼εi + U .

While the SR condition (equation (4.3)) fundamental to the LMA is always found to be
satisfied, we note that in the lower-n portion of the MV regime and into the beginning of the
EO regime we encounter difficulties in solving the Friedel sum rule fully self-consistently
(as in the algorithm specified in section 4). This occurs in practice when |�R

↑ (0)| is small
(�0.3); and while the reasons for it are largely technical we do not find it surprising since in
this non-universal regime comparably small contributions to �R

σ (0) (in addition to the spin-
fluctuation diagrams retained) will undoubtedly play a role. In practice, as relevant to the
ε̃i = 0–2 examples in figure 8, we have circumvented the matter, simply by replacing nimp

in equation (4.4) (or equation (3.12a)) by its MF counterpart n̄ ≡ n̄(ei, x); and although the
Friedel sum rule is not then fully satisfied, the differences between n̄ and nimp determined by
spectral integration (via equation (3.12b)) are modest (e.g. ∼10% for ε̃i = +1).

The EO regime itself also illustrates an important facet of the LMA, for although the
approach is naturally designed to capture the strong coupling physics inherent to the Kondo
regime, it is nonetheless perturbatively correct in weak coupling as the non-interacting limit is
approached. This arises for fixed Ũ on progressively emptying the impurity site by increasing
ε̃i further in the EO regime (where we add that the Friedel sum rule is in general satisfied to
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Figure 8. The mixed valence regime. π�0 D(ω) versus ω̃ = ω/�0 for fixed Ũ = 4π and ε̃i = −1,
0, +1, +2.

Figure 9. The empty orbital regime. π�0 D(ω) versus ω̃ = ω/�0 for fixed Ũ = 4π and ε̃i = +4,
7, 10 (solid curves). For ε̃i = 10 the non-interacting limit spectrum is shown (dotted curve).
Comparison is also made in all cases to second-order perturbation theory (SOPT, dashed curve);
for ε̃i = 7 and 10 the LMA and SOPT spectra are indistinguishable.

full self-consistency); as evident in figure 7 where nimp ≡ n asymptotically approaches the
non-interacting charge, shown as a dotted curve. Corresponding spectral evolution, π�0 D(ω)

versus ω̃ = ω/�0, is shown in figure 9 for ε̃i = 4, 7 and 10. For ε̃i = 4 the upper satellite
remains apparent as a weak shoulder that all but vanishes by ε̃i = 7, and is entirely gone
by ε̃i = 10 where the resultant spectrum is seen to be near coincident with that for the non-
interacting limit (dotted curve).

In particular, the LMA recovers with increasing ε̃i the weak coupling result of second-order
perturbation theory (SOPT) in U . The latter corresponds simply to enforcing x = 1

2 U |µ| = 0
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(so that �̃σ (ω) ≡ �(ω), Gσ (ω) ≡ G(ω) etc), replacing �−σσ in equation (4.5) by the bare
polarization bubble 0� and solving via steps (ii) and (iii) of the algorithm specified at the
beginning of section 4 (such that the Friedel sum rule is satisfied to full self-consistency). For
the LMA itself, x = 1

2 U |µ| is of course determined (step (i)) via SR equation (4.3). The
resultant local moment |µ| is thereby found to diminish with increasing ε̃i in the EO regime
and vanishes for ε̃i = ε̃io � 4.3 for the chosen Ũ = 4π (far above the ε̃io � 0 at which, from
equation (3.15), moments vanish at pure MF level; thus ensuring, as found for the symmetric
AIM [27], that physical properties evolve smoothly as ε̃i passes through ε̃io). For ε̃i > ε̃io

where |µ| = 0, the transverse spin polarization propagator equation (4.6) entering the LMA
self-energy equation (4.5) may then be expanded perturbatively in U ; the leading term of which
is precisely the SOPT result for the self-energy. In figure 9 LMA and SOPT single-particle
spectra are compared for ε̃i = 4, 7, 10; the SOPT spectra being given by the dashed curves. For
ε̃i = 4 the two are evidently very close (despite the persistence of moments within the LMA).
And for ε̃i = 7, 10 the LMA and SOPT spectra are to all intents and purposes coincident: both
are shown in the figure, but the differences are imperceptible.

6. Summary

We have considered in this paper single-particle dynamics of the AIM, a long-standing
issue [1, 2] pursued here via development of the local moment approach [27–32] to encompass
the general asymmetric case. The LMA can handle interaction strengths from strong to weak
coupling, as well as dynamics on all energy scales. And as implemented in practice, it appears
to capture rather well the wide spectrum of physical behaviour inherent to the problem; from
the non-perturbative Kondo physics characteristic of strong coupling, through mixed valence
to the ultimately perturbative empty orbital regime. This in turn has ramifications beyond
impurity models per se, to lattice-based systems within DMFT [5–8]; for the simple, practicable
approach developed here can be extended further to encompass important problems such as
the periodic Anderson model away from half-filling, and hence heavy fermion physics.
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